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Abstract 

The Natural Transform Method (NTM) and its applications are the main topic of this paper's 

exploration of recent developments in computing methods for solving nonlinear ordinary differential 

equations (ODEs). With regard to solving nonlinear ODEs, the paper presents the Natural 

Decomposition Method (NDM) as a novel approach and gives a thorough explanation of the NTM, 

including its integral transforms like the Laplace and Sumudu transforms. Complex differential 

equations can have exact or approximate solutions derived by the NDM using NTM and a series 

solution framework that includes recursive relations and Adomian polynomials. Worked examples 

showing that solutions obtained with the NDM closely match known outcomes highlight the usefulness 

of these methods. Researchers and industry professionals can benefit greatly from these developments 

in computational approaches, which offer notable gains in the efficiency and accuracy of solving 

nonlinear ODEs. 

 

Keywords: Computational, Techniques, Solving, Nonlinear, Ordinary Differential Equations 

 

1. INTRODUCTION 

The comprehension and simulation of intricate behaviors in diverse scientific and engineering 

domains, including as physics, biology, chemistry, economics, and engineering, heavily relies on the 

study of nonlinear ordinary differential equations, or ODEs. Nonlinear ODEs, in contrast to linear 

differential equations, include complex interactions in which the dependent variable and its derivatives 

manifest in nonlinear ways. Complex dynamics like chaos, bifurcations, and other phenomena that 

linear systems are unable to explain are frequently the result of this nonlinearity. Because of this, it is 

frequently impractical to solve nonlinear ODEs analytically, which calls for the development of 

sophisticated computational methods in order to produce approximate solutions with a reasonable level 

of accuracy. Nonlinear ODEs have traditionally been solved using conventional numerical techniques 

including the Euler method, Runge-Kutta methods, and finite difference approaches. Even though 

these techniques have been successful in resolving a wide range of issues, their use is frequently 

constrained by problems with accuracy, stability, and convergence-particularly when working with 

stiff equations or highly nonlinear systems. Due to these constraints, computational mathematics has 

seen a great deal of study and invention, which has resulted in the creation of increasingly complex 

methods that can manage the complexity of nonlinear ODEs. With recent developments, a new 

paradigm for solving nonlinear ODEs has been made possible by machine learning-based techniques, 

mainly neural networks. These methods make use of neural networks' data-driven architecture to learn 

intricate patterns and correlations from training data in order to approximate solutions.  

Besides, to further develop arrangement precision and registering productivity, metaheuristic 

calculations like Differential Advancement (DE), Molecule Multitude Improvement (PSO), and 

Hereditary Calculations (GA) have been joined with traditional mathematical techniques. These halves 

and half methodologies give stable arrangements even in circumstances including complex limit 

conditions or multi-faceted nonlinear frameworks by consolidating the upsides of both deterministic 

and stochastic methodologies. The development of adaptive and multiscale approaches has also been 
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prompted by the increasing demand for accuracy and efficiency in solving nonlinear ODEs. These 

methods guarantee that the numerical solutions are both computationally feasible and correct by 

dynamically adjusting discretisation and computational resources according to the local features of the 

issue. Furthermore, approaches like as finite element and spectral methods have been improved to 

better manage the difficulties presented by stiff equations and the complexity of nonlinearities. 

 

2. REVIEW OF LITREATURE 

Ahmad et al. (2020) investigate new viewpoints on regular answers for nonlinear time fragmentary 

halfway differential equations, underscoring the job of partial math in working on the exactness and 

productivity of mathematical arrangements. Their review offers inventive methodologies for handling 

nonlinearities by incorporating partial request administrators, which give a more extensive system to 

demonstrating processes with memory impacts. This work exhibits how fragmentary math based 

strategies can be really applied to a large number of nonlinear frameworks, offering better 

intermingling and security contrasted with conventional techniques. 

Arora and Ram (2024) provide a comprehensive overview of advanced numerical techniques for 

solving both linear and nonlinear differential equations. Their edited volume consolidates research on 

modern computational strategies, ranging from iterative methods to sophisticated hybrid approaches. 

The book accentuates the significance of choosing proper techniques in light of the idea of the 

differential equations being tackled, offering bits of knowledge into the compromises between 

computational intricacy and arrangement precision. The creators examine different mathematical 

plans, including limited contrast, limited component, and otherworldly strategies, while additionally 

investigating the job of AI and advancement calculations in improving the exhibition of these 

techniques. This work fills in as a significant asset for the two specialists and experts looking to figure 

out the most recent progressions in mathematical techniques for differential equations. 

Bhatti et al. (2020) focus on the recent trends in computational fluid dynamics (CFD) and their 

application in solving nonlinear differential equations. Their research highlights the growing use of 

advanced numerical methods and simulation techniques to model complex fluid flows governed by 

nonlinear ODEs and PDEs. The authors discuss the integration of CFD with modern computational 

tools, such as machine learning and data-driven approaches, which have significantly enhanced the 

predictive capabilities of CFD models. By addressing challenges related to stability, convergence, and 

accuracy, this work underscores the importance of leveraging hybrid methods that combine 

deterministic and stochastic techniques for solving nonlinear fluid dynamics problems. 

 

3. FUNDAMENTAL THOUGHT OF THE NORMAL CHANGE TECHNIQUE 

We give some foundation data with respect to the idea of the Normal Change Strategy (NTM) in this 

part. Given a capability 𝑓(𝑡), where 𝑡 ∈ (−∞, ∞), the overall basic change has the accompanying 

definition: 

ℑ[𝑓(𝑡)](𝑠) = ∫  
∞

−∞
𝐾(𝑠, 𝑡)𝑓(𝑡)𝑑𝑡,….(1)  ℐ[𝑓(𝑡)](𝑠) = ∫

∞

−∞
𝐾(𝑠, 𝑡)𝑓(𝑡)𝑑𝑡 

where 𝐾(𝑠, 𝑡) means the change's piece and 𝑠 is a genuine, complex number that is free of 𝑡. Remember 

that tJn(st) and t when K(s, t) is e−s 𝑡𝑠−1 (st), then Equation (1) gives the Hankel change, Mellin 

change, and Laplace change, in a specific order change. 

Let us now investigate the integral transformations described by for (𝑡), 𝑡 ∈ (−∞, ∞) : 

ℑ[𝑓(𝑡)](𝑢) = ∫  
∞

−∞
 𝐾(𝑡)𝑓(𝑢𝑡)𝑑𝑡

ℑ[𝑓(𝑡)](𝑠, 𝑢) = ∫  
∞

−∞
 𝐾(𝑠, 𝑡)𝑓(𝑢𝑡)𝑑𝑡

…..(2) 

 

It is vital to take note of that, when K(t) = e − t, the fundamental Sumudu change is given by Equation 

(2), where 𝑢 is utilized instead of boundarys. Moreover, the summed-up Laplace and Sumudu changes 

are characterized, individually for any worth of: 

ℓ[𝑓(𝑡)] = 𝐹(𝑠) = 𝑠𝑛 ∫  
0

  𝑒−𝑠𝑛+1𝑡𝑓(𝑠𝑛𝑡)𝑑𝑡

𝕊[𝑓(𝑡)] = 𝐺(𝑢) = 𝑢𝑛 ∫  
∞

0
 𝑒−𝑢𝑛𝑡𝑓(𝑡𝑢𝑛+1)𝑑𝑡

….(3) 
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Observe that the Laplace and Sumudu changes, individually, are addressed by Equations (2) and (3) 

when n = 0. 

 

4. Definitions and Properties of the N-Change 

The capability 𝑓(𝑡) for 𝑡 ∈ (−∞, ∞) has the accompanying regular change characterized by: 

ℕ[𝑓(𝑡)] = 𝑅(𝑠, 𝑢) = ∫  
∞

−∞
𝑒−𝑠𝑡𝑓(𝑢𝑡)𝑑𝑡; 𝑠, 𝑢 ∈ (−∞, ∞)…..(4) 

 

where the factors 𝑠 and 𝑢 are the regular change factors and 𝑁[𝑓(𝑡)] is the time capability 𝑓(𝑡 's) 

regular change. Remember that Eq. (4) can be communicated as: 

ℕ[𝑓(𝑡)] = ∫  
∞

−∞
 𝑒−𝑠𝑡𝑓(𝑢𝑡)𝑑𝑡; 𝑠, 𝑢 ∈ (−∞, ∞)

 = [∫  
0

−∞
  𝑒−𝑠𝑡𝑓(𝑢𝑡)𝑑𝑡; 𝑠, 𝑢 ∈ (−∞, 0)] + [∫  

∞

0
 𝑒−𝑠𝑡𝑓(𝑢𝑡)𝑑𝑡; 𝑠, 𝑢 ∈ (0, ∞)]

 = ℕ−[𝑓(𝑡)] + ℕ+[𝑓(𝑡)]

 = ℕ[𝑓(𝑡)𝐻(−𝑡)] + ℕ[𝑓(𝑡)𝐻(𝑡)]

 = 𝑅−(𝑠, 𝑢) + 𝑅+(𝑠, 𝑢)

..(5) 

The Heaviside capability is addressed by H(.). This ought to be noted: if the capability 𝑓(𝑡)𝐻(𝑡) is 

characterized on the positive genuine hub for all 𝑡 values in 𝑅, then, at that point, the Regular change 

(N-Change) is characterized on the set 

 

𝐴 = {
𝑓(𝑡): ∃𝑀, 𝜏1, 𝜏2 > 0, such that |𝑓(𝑡)| < 𝑀𝑒

|𝑡|

𝜏𝑗 , }

 if 𝑡 ∈ (−1)𝑗 × [0, ∞), 𝑗 ∈ ℤ+

ℕ[𝑓(𝑡)𝐻(𝑡)] = ℕ+[𝑓(𝑡)] = 𝑅+(𝑠, 𝑢) = ∫  
∞

0
  𝑒−𝑠𝑡𝑓(𝑢𝑡)𝑑𝑡; 𝑠, 𝑢 ∈ (0, ∞)

….(6) 

 

the Heaviside capability is addressed by H(.). Remember that Equation (6) can be diminished to the 

Sumudu change if s = 1 and to the Laplace change if u = 1. We currently give a portion of the N 

Changes alongside their transformation to Laplace and Sumudu. 

 

Table 1: Unique N-Transforms and the transformation to Laplace and Sumudu 

𝑓(𝑡) ℕ[𝑓(𝑡)] 𝕊[𝑓(𝑡)] ℓ[𝑓(𝑡)] 

1 
1

𝑠
 1 

1

𝑠
 

𝑡 
𝑢

𝑠2
 𝑢 

1

𝑠2
 

𝑒𝑎𝑡 
1

𝑠 − 𝑎𝑢
 

1

1 − 𝑎𝑢
 

1

𝑠 − 𝑎
 

𝑡𝑛−1

(𝑛 − 1)!
, 𝑛 = 1,2, … 

𝑢𝑛−1

𝑠𝑛
 𝑢𝑛−1 

1

𝑠𝑛
 

sin(𝑡) 
𝑢

𝑠2 + 𝑢2
 

𝑢

1 + 𝑢2
 

1

1 + 𝑠2
 

 

Remark 1: Further information regarding the Natural transform can be found. Here is some crucial N 

-Transform qualities that we now present: 

 

Table 2: Properties of N-Transforms 

Functional Form Natural Transform 
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𝑦(𝑡) 𝑌(𝑠, 𝑢) 

𝑦(𝑎𝑡) 
1

𝑎
𝑌(𝑠, 𝑢) 

𝑦′(𝑡) 
𝑠

𝑢
𝑌(𝑠, 𝑢) −

𝑦(0)

𝑢
 

𝑦′′(𝑡) 
𝑠2

𝑢2
𝑌(𝑠, 𝑢) −

𝑠

𝑢2
𝑦(0) −

𝑦′(0)

𝑢
 

𝛾𝑦(𝑡) ± 𝛽𝑣(𝑡) 𝛾𝑌(𝑠, 𝑢) ± 𝛽𝑉(𝑠, 𝑢) 

 

5. THE NORMAL DETERIORATION STRATEGY 

We exhibit how the Normal Decay Technique might be utilized to settle a couple of nonlinear ordinary 

differential equations in this segment. 

 

5.1 Methodology of the NDM: 

Analyze the accompanying general nonlinear ordinary differential condition: 

𝐿𝑣 + 𝑅(𝑣) + 𝐹(𝑣) = 𝑔(𝑡)…(7) 

 

based on the original condition 

𝑣(0) = ℎ(𝑡)….(8) 

 

where g(t) is the nonhomogeneous term, F(v) is the nonlinear term, R is the differential administrator's 

lingering, and L is the administrator of the greatest subordinate. Assuming L is a first-order differential 

operator, we can obtain the following by using the N − Transform of Equation (7): 
𝑠𝑉(𝑠,𝑢)

𝑢
−

𝑉(0)

𝑢
+ ℕ+[𝑅(𝑣)] + ℕ+[𝐹(𝑣)] = ℕ+[𝑔(𝑡)]….(9) 

 

When we change Eq. (8) to Eq. (9), we get: 

𝑉(𝑠, 𝑢) =
ℎ(𝑡)

𝑠
+

𝑢

𝑠
ℕ+[𝑔(𝑡)] −

𝑢

𝑠
ℕ+[𝑅(𝑣) + 𝐹(𝑣)]….(10) 

 

By taking the N -Change of Condition (10) contrarily, we acquire: 

𝑣(𝑡) = 𝐺(𝑡) − ℕ−1 [
𝑢

𝑠
ℕ+[𝑅(𝑣) + 𝐹(𝑣)]]…..(11) 

 

where the source term is G(t). Now, we'll assume that the unknown function 𝑣(𝑡) of the following 

form has an infinite series solution: 

𝑣(𝑡) = ∑  ∞
𝑛=0 𝑣𝑛(𝑡)….(12) 

 

Next, we can rewrite Eq. (11) in the following form by applying Eq. (12): 

∑  ∞
𝑛=0 𝑣𝑛(𝑡) = 𝐺(𝑡) − ℕ−1 [

𝑢

𝑠
ℕ+[𝑅 ∑  ∞

𝑛=0  𝑣𝑛(𝑡) + ∑  ∞
𝑛=0  𝐴𝑛(𝑡)]]….(13) 

 

where the nonlinear term is represented by the Adomian polynomial An(t). 

We can quickly construct the recursive relation by comparing the two sides of Eq. (13) as shown 

below: 
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𝑣0(𝑡) = 𝐺(𝑡)

𝑣1(𝑡) = −ℕ−1 [
𝑢

𝑠
ℕ+[𝑅𝑣0(𝑡) + 𝐴0(𝑡)]]

𝑣2(𝑡) = −ℕ−1 [
𝑢

𝑠
ℕ+[𝑅𝑣1(𝑡) + 𝐴1(𝑡)]]

𝑣3(𝑡) = −ℕ−1 [
𝑢

𝑠
ℕ+[𝑅𝑣2(𝑡) + 𝐴2(𝑡)]]

….(14) 

 

We eventually have the broad recursive relation shown here: 

𝑣𝑛+1(𝑡) = −ℕ−1 [
𝑢

𝑠
ℕ+[𝑅𝑣𝑛(𝑡) + 𝐴𝑛(𝑡)]] ,  𝑛 ≥ 0….(15) 

 

Therefore, the exact or approximative answer is provided by: 

𝑣(𝑡) = ∑  ∞
𝑛=0 𝑣𝑛(𝑡)….(16) 

 

6. Examples 

This section compares our solutions to the actual solutions that already exist after applying the NDM 

to three real-world scenarios. 

 

Example 1:  Look at the accompanying first-request nonlinear differential condition: 
𝑑2𝑣

𝑑𝑡2 + (
𝑑𝑣

𝑑𝑡
)

2

+ 𝑣2(𝑡) = 1 − sin(𝑡)….(17) 

 

based on the original condition 

𝑣(0) = 0,  𝑣′(0) = 1…(18) 

 

To begin with, we apply the N -change to the two sides of Condition (5.1), and the outcome is: 
𝑠2𝑉(𝑠,𝑢)

𝑢2 −
𝑠𝑉(0)

𝑢2 −
𝑣′(0)

𝑢
+ ℕ+ [(

𝑑𝑣

𝑑𝑡
)

2

] + ℕ+[𝑣2(𝑡)] =
1

𝑠
−

𝑢

𝑠2+𝑢2…(19) 

 

We get the following by changing Eq. (18) to Eq. (19): 

𝑉(𝑠, 𝑢) =
𝑢2

𝑠3 +
𝑢

𝑠2+𝑢2 −
𝑢2

𝑠2 ℕ+ [(
𝑑𝑣

𝑑𝑡
)

2

+ 𝑣2(𝑡)]….(20) 

 

Next, using Eq. (20 inverse N-Transform), we obtain: 

𝑣(𝑡) =
𝑡2

2!
+ sin(𝑡) − ℕ−1 [

𝑢2

𝑠2
ℕ+ [(

𝑑𝑣

𝑑𝑡
)

2

+ 𝑣2(𝑡)]]….(21) 

 

Now, we'll assume that the unknown function 𝑣(𝑡) has an infinite series solution of the following form: 

𝑣(𝑡) = ∑  ∞
𝑛=0 𝑣𝑛(𝑡)….(22) 

We may rewrite Eq. (21) as follows by utilizing Eq. (22): 

∑  ∞
𝑛=0 𝑣𝑛(𝑡) =

𝑡2

2!
+ sin(𝑡) − ℕ−1 [

𝑢2

𝑠2
ℕ+[∑  ∞

𝑛=0  𝐴𝑛 + ∑  ∞
𝑛=0  𝐵𝑛]]….(23) 

 

where the Adomian polynomials of the nonlinear terms (dv/dt)2 and v2(t) are, separately, An and Bn. 

From that point forward, we might drive the overall recursive connection as follows by contrasting the 

different sides of Equation (23): 
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𝑣0(𝑡) =
𝑡2

2!
+ sin(𝑡)

𝑣1(𝑡) = −ℕ−1 [
𝑢2

𝑠2 ℕ+[𝐴0 + 𝐵0]]

𝑣2(𝑡) = −ℕ−1 [
𝑢2

𝑠2 ℕ+[𝐴1 + 𝐵1]]

𝑣3(𝑡) = −ℕ−1 [
𝑢2

𝑠2 ℕ+[𝐴2 + 𝐵2]]

……(24) 

 

The broad recursive relation is thus provided by 

𝑣𝑛+1(𝑡) = −ℕ−1 [
𝑢2

𝑠2
ℕ+[𝐴𝑛 + 𝐵𝑛]] ,  𝑛 ≥ 0….(25) 

 

The excess parts of the obscure capability v(t) can subsequently be basically processed as follows 

utilizing the recursive connection characterized in Eq. (25): 

𝑣1(𝑡) = −ℕ−1 [
𝑢2

𝑠2 ℕ+[𝐴0 + 𝐵0]]

 = −ℕ−1 [
𝑢2

𝑠2 ℕ+[(𝑣0
′ )2 + 𝑣0

2]]

 = −ℕ−1 [
𝑢2

𝑠2 ℕ+[(𝑣0
′ )2 + 𝑣0

2]]

 = −ℕ−1 [
𝑢2

𝑠2 ℕ+[1]] + ⋯

 = −ℕ−1 [
𝑢2

𝑠3 ] + ⋯

 = −
𝑡2

2!
+ ⋯

…..(26) 

Thusly, it is feasible to exhibit that the non-dropped part of 𝑣0(𝑡) still fulfills the gave differential 

condition by dropping the clamor terms that arise somewhere in the range of 𝑣0(𝑡) and 𝑣1(𝑡). This 

prompts a definite arrangement of the accompanying structure: 

𝑣(𝑡) = sin(𝑡)….(27) 

The precise answer closely matches the outcome that (ADM) was able to acquire. 
𝑑𝑣

𝑑𝑡
− 1 = 𝑣2(𝑡) … … (28)  

subject to the initial condition 

𝑣(0) = 0 … … . . (29)  

Equation (29), when the Natural transform is applied to both sides, yields: 
𝑠

𝑢
𝑉(𝑠, 𝑢) −

1

𝑢
𝑉(𝑠, 𝑢) −

1

𝑠
= ℕ+[𝑣2(𝑡)] … … (30)  

Replacing Equation (29) 

𝑉(𝑠, 𝑢) =
𝑢

𝑠2
+

𝑢

𝑠
[ℕ+[𝑣2(𝑡)]] … . . (31)  

we attain  

𝑣(𝑡) = 𝑡 + ℕ−1 [
𝑢

𝑠
[ℕ+[𝑣2(𝑡)]]] … . (32)  

We now assume that the unknown function v(t) has an infinite solution of the following form: 

𝑣(𝑡) = ∑  

∞

𝑛=0

 𝑣𝑛(𝑡) … . (33)  

We can rewrite Eq. (32) using Eq. (33) as follows: 
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∑  

∞

𝑛=0

 𝑣𝑛(𝑡) = 𝑡 + ℕ−1 [
𝑢

𝑠
[ℕ+ [∑  

∞

𝑛=0

 𝐴𝑛(𝑡)]]] … . . (34)  

we can engender the recursive relative as trails: 

𝑣0(𝑡) = 𝑡

𝑣1(𝑡) = ℕ−1 [
𝑢

𝑠
[ℕ+[𝐴0(𝑡)]]]

𝑣2(𝑡) = ℕ−1 [
𝑢

𝑠
[ℕ+[𝐴1(𝑡)]]]

𝑣3(𝑡) = ℕ−1 [
𝑢

𝑠
[ℕ+[𝐴2(𝑡)]]]

…..(35) 

Consequently, the following represents the general recursive relation: 

𝑣𝑛+1(𝑡) = ℕ−1 [
𝑢

𝑠
[ℕ+[𝐴𝑛(𝑡)]]] ,  𝑛 ≥ 0 … … (36)  

We can quickly calculate the remaining elements of the unknown function v(t) using Eq. (36) as 

follows: 

𝑣1(𝑡) = ℕ−1 [
𝑢

𝑠
[ℕ+[𝐴0(𝑡)]]] = ℕ−1 [

𝑢

𝑠
[ℕ+[𝑣0

2(𝑡)]]]

 = ℕ−1 [
𝑢

𝑠
[ℕ+[𝑡2]]] = ℕ−1 [

2𝑢3

𝑠4
] =

1

3
𝑡3,

𝑣2(𝑡) = ℕ−1 [
𝑢

𝑠
[ℕ+[𝐴1(𝑡)]]] = ℕ−1 [

𝑢

𝑠
[ℕ+[2𝑣0(𝑡)𝑣1(𝑡)]]]

 = ℕ−1 [
𝑢

𝑠
[ℕ+ [

2𝑡4

3
]]] = ℕ−1 [

48𝑢5

3𝑠6
] =

2𝑡5

15

𝑣3(𝑡) = ℕ−1 [
𝑢

𝑠
[ℕ+[𝐴2(𝑡)]]] = ℕ−1 [

𝑢

𝑠
[ℕ+[2𝑣0(𝑡)𝑣2(𝑡) + 𝑣1

2(𝑡)]]]

 = ℕ−1 [
𝑢

𝑠
[ℕ+ [

17𝑡6

45
]]] = ℕ−1 [

12240𝑢7

45𝑠8
] =

17𝑡7

315

… . . (37) 

Then the approximate explanation of the unidentified function 𝑣(𝑡) is specified by: 

𝑣(𝑡) = ∑  

∞

𝑛=0

 𝑣𝑛(𝑡)

 = 𝑣0(𝑡) + 𝑣1(𝑡) + 𝑣2(𝑡) + 𝑣3(𝑡) + ⋯

 = 𝑡 +
1

3
𝑡3 +

2𝑡5

15
+

17𝑡7

315
+ ⋯

 

Now we get 

𝑣(𝑡) = tan (𝑡) 

The exact solution is in closed agreement with the result obtained by (ADM). 

 

Example 2: Examine the following first-order nonlinear ordinary differential equation: 
𝑑𝑣

𝑑𝑡
= 1 − 𝑡2 + 𝑣2(𝑡)…(38) 

 

based on the original condition 

𝑣(0) = 0….(39) 

 

Applying the Natural transform to each side of Equation (29) yields the following result: 
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𝑠

𝑢
𝑉(𝑠, 𝑢) −

1

𝑢
𝑉(𝑠, 𝑢) −

1

𝑠
= ℕ+[𝑣2(𝑡)]….(40) 

 

By changing Eq. (40), we get: 

𝑉(𝑠, 𝑢) =
𝑢

𝑠2 +
𝑢

𝑠
[ℕ+[𝑣2(𝑡)]]….(41) 

 

Using Eq. (41)'s inverse Natural transform, we get: 

𝑣(𝑡) = 𝑡 + ℕ−1 [
𝑢

𝑠
[ℕ+[𝑣2(𝑡)]]]….(42) 

 

The unknown function 𝑣(𝑡) of the following form is now assumed to have an infinite solution: 

𝑣(𝑡) = ∑  ∞
𝑛=0 𝑣𝑛(𝑡)….(43) 

 

We may rewrite Eq. (42) as follows using Eq. (43): 

∑  ∞
𝑛=0 𝑣𝑛(𝑡) = 𝑡 + ℕ−1 [

𝑢

𝑠
[ℕ+[∑  ∞

𝑛=0  𝐴𝑛(𝑡)]]]…..(44) 

  

And the nonlinear term 𝑉2(𝑡) is represented by the Adomian polynomial An(t). 

Next, we can create the recursive relation as follows using Eq. (44): 

𝑣0(𝑡) = 𝑡

𝑣1(𝑡) = ℕ−1 [
𝑢

𝑠
[ℕ+[𝐴0(𝑡)]]]

𝑣2(𝑡) = ℕ−1 [
𝑢

𝑠
[ℕ+[𝐴1(𝑡)]]]

𝑣3(𝑡) = ℕ−1 [
𝑢

𝑠
[ℕ+[𝐴2(𝑡)]]]

…..(45) 

 

Consequently, the generic recursive relation is provided by: 

𝑣𝑛+1(𝑡) = ℕ−1 [
𝑢

𝑠
[ℕ+[𝐴𝑛(𝑡)]]] ,  𝑛 ≥ 0…..(46) 

 

The remaining components of the unknown function 𝑣(t) are simply computed as follows using Eq. 

(46): 

𝑣1(𝑡) = ℕ−1 [
𝑢

𝑠
[ℕ+[𝐴0(𝑡)]]] = ℕ−1 [

𝑢

𝑠
[ℕ+[𝑣0

2(𝑡)]]]

 = ℕ−1 [
𝑢

𝑠
[ℕ+[𝑡2]]] = ℕ−1 [

2𝑢3

𝑠4 ] =
1

3
𝑡3

𝑣2(𝑡) = ℕ−1 [
𝑢

𝑠
[ℕ+[𝐴1(𝑡)]]] = ℕ−1 [

𝑢

𝑠
[ℕ+[2𝑣0(𝑡)𝑣1(𝑡)]]]

 = ℕ−1 [
𝑢

𝑠
[ℕ+ [

2𝑡4

3
]]] = ℕ−1 [

48𝑢5

3𝑠6
] =

2𝑡5

15

𝑣3(𝑡) = ℕ−1 [
𝑢

𝑠
[ℕ+[𝐴2(𝑡)]]] = ℕ−1 [

𝑢

𝑠
[ℕ+[2𝑣0(𝑡)𝑣2(𝑡) + 𝑣1

2(𝑡)]]]

 = ℕ−1 [
𝑢

𝑠
[ℕ+ [

17𝑡6

45
]]] = ℕ−1 [

12240𝑢7

45𝑠8 ] =
17𝑡7

315

…..(47) 

 

Next, the following represents the approximative solution of the unknown function (t) : 
𝑣(𝑡) = ∑  ∞

𝑛=0  𝑣𝑛(𝑡)

 = 𝑣0(𝑡) + 𝑣1(𝑡) + 𝑣2(𝑡) + 𝑣3(𝑡) + ⋯

 = 𝑡 +
1

3
𝑡3 +

2𝑡5

15
+

17𝑡7

315
+ ⋯

…..(48) 
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Thus, the following provides the precise answer to Eq. (48): 

𝑣(𝑡) = tan (𝑡)…..(49) 

The precise answer closely matches the outcome that (ADM) was able to acquire. 

 

7. CONCLUSION 

The Natural Transform Method (NTM) and related methodologies have tremendous promise, as 

demonstrated by the developments in computational strategies for solving nonlinear ordinary 

differential equations (ODEs). The NTM provides a strong foundation for solving nonlinear ODEs. It 

includes several integral transforms, including the Laplace, Sumudu, and their generalized variants. 

The Natural Decomposition Method (NDM), which incorporates recursive relations and Adomian 

polynomials, offers a methodical way to solve nonlinear differential equations through a series solution 

technique by utilizing these transforms. The given examples show how the NDM can be applied 

practically to get perfect or approximate answers that closely match known solutions. These 

developments make it a useful tool for researchers and practitioners in the field by streamlining the 

computational process and improving the accuracy of solutions to difficult differential equations. 
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